

metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[[aqua[3-(3-hydroxyphenyl)prop-2-enoato]samarium(III)]-bis[µ₂-3-(3-hydroxyphenyl)prop-2-enoato]] monohydrate]

Jing-ke Guo and Yi-Hang Wen*

Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China

Correspondence e-mail: wyh@zjnu.edu.cn

Received 29 December 2011; accepted 29 March 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.014; wR factor = 0.037; data-to-parameter ratio = 12.7.

The title Sm^{III} compound, {[Sm(C₀H₇O₃)₃(H₂O)]·H₂O}_n, was obtained under hydrothermal conditions. Its structure is isotypic with the analogous Eu complex. The latter was reported incorrectly in space group P1 by Yan et al. [J. Mol. Struct. (2008), 891, 298-304]. This was corrected by Marsh [Acta Cryst. B65, 782-783] to P1. The Sm^{III} ion is ninecoordinated by O atoms from one coordinating water molecule and the remaining ones from the 3-(3-hydroxyphenyl)prop-2-enoatate anions (one bidentate, two bidentate and bridging, two monodentate bridging), leading to a distorted tricapped trigonal-prismatic coordination polyhedron surrounded by solvent water molecules. In the crystal, extensive intermolecular O-H···O hydrogen-bonding interactions and $\pi - \pi$ interactions [centroid–centroid separation = 3.9393 (1) Å] lead to the formation of a three-dimensional supramolecular network.

Related literature

For the isotypic Eu structure, see: Yan *et al.* (2008) and for the corrected space-group assignment, see: Marsh (2009). For related structures, see: Niu *et al.* (2008); Tang *et al.* (2009); Wang & Feng (2010); Xue *et al.* (2007); Ye *et al.* (2005).

Experimental

Crystal data $[Sm(C_9H_7O_3)_3(H_2O)] \cdot H_2O$ $M_r = 675.82$ Triclinic, $P\overline{1}$ a = 7.9411 (1) Å b = 13.0312 (2) Å c = 13.6564 (2) Å $\alpha = 97.356$ (1)° $\beta = 97.120$ (1)°

Data collection

```
Bruker APEXII area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T<sub>min</sub> = 0.53, T<sub>max</sub> = 0.71
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.014$ $wR(F^2) = 0.037$ S = 1.044722 reflections 373 parameters 10 restraints 17958 measured reflections 4722 independent reflections

 $\gamma = 103.739 \ (1)^{\circ}$

Mo $K\alpha$ radiation

 $0.52 \times 0.24 \times 0.15 \text{ mm}$

 $\mu = 2.25 \text{ mm}^{-1}$

T = 296 K

Z = 2

V = 1343.87 (3) Å³

4722 independent reflections 4590 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.016$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.40 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.47 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W-H1WA\cdots O5^{i}$	0.82 (2)	2.02 (2)	2.8183 (18)	163 (2)
O3−H3···O8 ⁱⁱ	0.91 (2)	1.76 (2)	2.6692 (19)	176 (3)
O6−H6···O7 ⁱⁱⁱ	0.92(2)	1.78 (2)	2.7005 (19)	174 (3)
$O2W - H2WA \cdots O9^{iv}$	0.84(2)	2.15 (2)	2.947 (4)	158 (3)
$O1W - H1WB \cdots O2W^{v}$	0.83 (2)	1.86 (2)	2.688 (2)	175 (2)
$O2W-H2WB\cdots O3^{vi}$	0.81 (2)	1.98 (2)	2.790 (3)	173 (4)

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) x, y, z + 1; (iii) x + 1, y + 1, z; (iv) -x + 1, -y + 1, -z; (v) -x + 1, -y + 1, -z + 1; (vi) x, y, z - 1.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2052).

References

- Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (2006). *APEX2* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Marsh, R. E. (2009). Acta Cryst. B65, 782-783.
- Niu, C. Y., Wu, B. L., Zheng, X. F., Zhang, H. Y., Hou, H. W., Niu, Y. Y. & Li, Z. J. (2008). Cryst. Growth Des. 8, 1566–1574.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tang, Z.-W., Fu, J.-D., Jiang, L.-P. & Wen, Y.-H. (2009). Acta Cryst. E65, m979. Wang, X.-J. & Feng, Y.-L. (2010). Acta Cryst. E66, o1298.
- Xue, D. X., Lin, Y. Y., Cheng, X. N. & Cheng, X. M. (2007). *Cryst. Growth Des.*
- 7, 1332–1336.
- Yan, J., Guo, Y. M., Li, H., Sun, X. P. & Wang, Z. (2008). J. Mol. Struct. 891, 298–304.
- Ye, B.-H., Tong, M.-L. & Chen, X.-M. (2005). Coord. Chem. Rev. 249, 545-565.

supplementary materials

Acta Cryst. (2012). E68, m543-m544 [doi:10.1107/S1600536812013724]

catena-Poly[[[aqua[3-(3-hydroxyphenyl)prop-2-enoato]samarium(III)]-bis- $[\mu_2$ -3-(3-hydroxyphenyl)prop-2-enoato]] monohydrate]

Jing-ke Guo and Yi-Hang Wen

Comment

It is well known that metal and appropriate ligand are the keys for construction of metal-organic frameworks. Here we choose 3-hydroxycinnamic acid as a ligand due to its unique ability to form stable chelates in diverse coordination modes. Reserches on the compounds containing metal ions and 3-hydroxycinnamic acid have been reported (Niu *et al.* (2008); Xue *et al.*(2007); Ye *et al.*(2005)). Hererin we report a Sm^{III} compound, Sm(C₉H₇O₃)₃(H₂O).(H₂O), derived from 3-hydroxycinnamic acid (H₂L),which is not the first rare-earth complex of this ligand. It is isostructural to the Eu complex, Firstly wrongly in P1 by Yan *et al.*, in 2008, this was then corrected by Marsh to P-1 in 2009.

As is shown in Fig. 1, the structrue contains only one nine-coordinated $Sm^{(III)}$ ions which is coordinated by eight oxygen atoms from carboxylate groups in four 3-hydroxyphenyl anions and one oxygen atom from the water molecule, leading to a distored tricapped trigonal prism structure surrounded by solvent H₂O molecule.

In the structure, the 3-hydroxycinnamic acids coordinate *via* three chelating carboxylate groups and two oxygen atoms of another two carboxylate groups bridging two Sm^(III) ions [Sm—O distances in the range of 2.3695 (11) and 2.5861 (11) Å], to form a one-dimensional chain with Sm···Sm 4.0887 (1) Å. Furthermore, the oxygen atom in the coordinated water molecule [Sm—O distance 2.4517 (13) Å] completes the nine-coordinated configuration of Sm. In addition, there are one lattice H₂O molecule in the crystal structure. Intermolecular O—H···O and C—H···O hydrogen bonds connect the molecules to form a three-dimensional supramolecular skeleton (Fig. 2).

Experimental

A mixture of Sm(NO₃)₃(0.1682 g, 0.5 mmol),3-hydroxycinnamic acid (0.2462 g, 1.5 mmol) and 4,4-bipyridine (0.2343 g, 1.5 mmol) was dissolved in a 16 mL EtOH/H₂O(ν/ν ,1:15) and then sealed in a 25 ml stainless steel reactor with a telflon liner and heated at 413 K for 72 h, and then cooled to room temperature over 3 days. Then, the reactor was cooled to room temperature at a speed of 5 degrees per hour. Yellow single crystals of title compound were obtained by slow evaporation of the filtrate over a few days.

Refinement

The carbon-bound H-atoms were positioned geometrically and included in the refinement using a riding model [C—H 0.93 Å $U_{iso}(H) = 1.2U_{eq}(C)$]. Water H atoms were located in different maps and refined with distance restraints of O—H = 0.85 (2) Å and H—H = 1.35 Å, with displacement parameters set at 1.5 $U_{eq}(O)$.

Computing details

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT* (Bruker, 2006); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97*

(Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

The molecular structure of title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 1.]

Figure 2

View of the supramolecular network conneted by hydrogen bonds.

catena-Poly[[[aqua[3-(3-hydroxyphenyl)prop-2-enoato]samarium(III)]- bis[μ_2 -3-(3-hydroxyphenyl)prop-2-enoato]] monohydrate]

Crystal data	
$[Sm(C_9H_7O_3)_3(H_2O)] \cdot H_2O$ $M_r = 675.82$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 7.9411 (1) Å b = 13.0312 (2) Å c = 13.6564 (2) Å $a = 97.356 (1)^{\circ}$ $\beta = 97.120 (1)^{\circ}$ $\gamma = 103.739 (1)^{\circ}$ $V = 1343.87 (3) \text{ Å}^3$	Z = 2 F(000) = 674 $D_x = 1.670 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9871 reflections $\theta = 1.6-25.0^{\circ}$ $\mu = 2.25 \text{ mm}^{-1}$ T = 296 K Block, yellow $0.52 \times 0.24 \times 0.15 \text{ mm}$
Data collection	
Bruker APEXII area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.53, T_{\max} = 0.71$	17958 measured reflections 4722 independent reflections 4590 reflections with $I > 2\sigma(I)$ $R_{int} = 0.016$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 1.6^{\circ}$ $h = -9 \rightarrow 9$ $k = -15 \rightarrow 15$ $l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.014$	Hydrogen site location: inferred from
$wR(F^2) = 0.037$	neighbouring sites
S = 1.04	H atoms treated by a mixture of independent
4722 reflections	and constrained refinement
373 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0243P)^2 + 0.3656P]$
10 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.002$
direct methods	$\Delta ho_{ m max} = 0.40 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.47 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Sm1	0.231707 (9)	0.462033 (5)	0.480253 (5)	0.01695 (4)
01	0.06012 (15)	0.55519 (9)	0.59671 (8)	0.0240 (2)
O1W	0.07151 (18)	0.32289 (11)	0.56401 (11)	0.0324 (3)
H1WA	-0.034 (2)	0.318 (2)	0.5643 (17)	0.049*
H1WB	0.109 (3)	0.312 (2)	0.6205 (14)	0.049*
O2	0.32583 (16)	0.54888 (12)	0.65526 (9)	0.0349 (3)
O2W	0.7925 (2)	0.70266 (18)	0.25319 (14)	0.0629 (5)
H2WA	0.786 (4)	0.7600 (17)	0.232 (3)	0.094*
H2WB	0.697 (3)	0.661 (2)	0.232 (3)	0.094*
03	0.4554 (2)	0.56809 (15)	1.19165 (12)	0.0515 (4)
Н3	0.401 (3)	0.5246 (19)	1.2314 (18)	0.062*
O4	0.51185 (15)	0.59885 (9)	0.47391 (9)	0.0240 (3)
05	0.26831 (15)	0.64608 (9)	0.43899 (10)	0.0278 (3)
O6	1.0331 (2)	1.09500 (12)	0.39523 (14)	0.0506 (4)
H6	1.080 (3)	1.1627 (15)	0.382 (2)	0.061*
O7	0.19076 (17)	0.29241 (9)	0.36232 (9)	0.0306 (3)
08	0.28389 (16)	0.44152 (9)	0.30584 (9)	0.0259 (3)
09	0.3333 (5)	0.1288 (2)	-0.16532 (17)	0.1181 (11)
Н9	0.351 (6)	0.077 (3)	-0.215 (3)	0.142*
C1	0.3318 (3)	0.59470 (16)	1.12695 (14)	0.0358 (4)
C2	0.1850 (3)	0.62021 (18)	1.15591 (15)	0.0437 (5)
H2A	0.1672	0.6218	1.2221	0.052*
C3	0.0638 (3)	0.6435 (2)	1.08592 (16)	0.0479 (6)
H3A	-0.0346	0.6618	1.1056	0.057*
C4	0.0877 (3)	0.63986 (18)	0.98720 (15)	0.0401 (5)

H4A	0.0039	0.6541	0.9406	0.048*
C5	0.2359 (3)	0.61510 (15)	0.95721 (14)	0.0313 (4)
C6	0.3595 (3)	0.59493 (16)	1.02878 (14)	0.0349 (4)
H6A	0.4621	0.5814	1.0104	0.042*
C7	0.2629 (2)	0.60020 (16)	0.85277 (14)	0.0320 (4)
H7A	0.3726	0.5922	0.8417	0.038*
C8	0.1498 (2)	0.59684 (16)	0.77289 (13)	0.0306 (4)
H8A	0.0447	0.6140	0.7811	0.037*
С9	0.1830 (2)	0.56691 (14)	0.67091 (13)	0.0237 (4)
C10	0.8553 (3)	1.07639 (15)	0.38269 (15)	0.0351 (4)
C11	0.7683 (3)	1.14997 (15)	0.35253 (16)	0.0406 (5)
H11A	0.8315	1.2160	0.3411	0.049*
C12	0.5879 (3)	1.12497 (16)	0.33946 (18)	0.0457 (5)
H12A	0.5299	1.1749	0.3196	0.055*
C13	0.4906 (3)	1.02652 (16)	0.35534 (17)	0.0395 (5)
H13A	0.3686	1.0104	0.3454	0.047*
C14	0.5770 (3)	0.95222 (14)	0.38628 (14)	0.0305 (4)
C15	0.7603 (3)	0.97840 (14)	0.40027 (15)	0.0329 (4)
H15A	0.8194	0.9296	0.4216	0.040*
C16	0.4745 (3)	0.84864 (14)	0.40343 (14)	0.0306 (4)
H16A	0.3529	0.8359	0.3920	0.037*
C17	0.5399 (2)	0.77163 (14)	0.43369 (14)	0.0291 (4)
H17A	0.6614	0.7836	0.4458	0.035*
C18	0.4330 (2)	0.66875 (13)	0.44924 (12)	0.0214 (3)
C19	0.2960 (5)	0.0830 (2)	-0.0827 (2)	0.0676 (8)
C20	0.2780 (5)	-0.0240 (2)	-0.0819 (2)	0.0729 (9)
H20A	0.2905	-0.0681	-0.1383	0.087*
C21	0.2415 (5)	-0.0653 (2)	0.0023 (3)	0.0786 (10)
H21A	0.2308	-0.1377	0.0036	0.094*
C22	0.2202 (4)	-0.0002 (2)	0.0858 (2)	0.0643 (8)
H22A	0.1926	-0.0294	0.1422	0.077*
C23	0.2398 (3)	0.10820 (18)	0.08566 (17)	0.0436 (5)
C24	0.2779 (4)	0.1496 (2)	0.00018 (18)	0.0572 (7)
H24A	0.2912	0.2222	-0.0014	0.069*
C25	0.2225 (3)	0.17526 (16)	0.17687 (15)	0.0390 (5)
H25A	0.1776	0.1391	0.2262	0.047*
C26	0.2632 (3)	0.28090 (15)	0.19707 (14)	0.0319 (4)
H26A	0.3052	0.3196	0.1486	0.038*
C27	0.2452 (2)	0.34016 (14)	0.29289 (13)	0.0241 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sm1	0.01437 (6)	0.01882 (5)	0.01808 (6)	0.00429 (3)	0.00325 (3)	0.00391 (3)
01	0.0194 (6)	0.0320 (6)	0.0198 (6)	0.0078 (5)	0.0009 (5)	0.0018 (5)
O1W	0.0274 (7)	0.0365 (7)	0.0393 (8)	0.0103 (6)	0.0122 (6)	0.0173 (6)
O2	0.0209 (6)	0.0605 (9)	0.0234 (6)	0.0171 (6)	0.0007 (5)	-0.0023 (6)
O2W	0.0519 (11)	0.0872 (14)	0.0500 (11)	0.0134 (10)	0.0081 (8)	0.0216 (10)
O3	0.0422 (9)	0.0771 (11)	0.0373 (8)	0.0086 (8)	0.0032 (7)	0.0328 (8)
04	0.0185 (6)	0.0208 (6)	0.0340 (7)	0.0063 (5)	0.0027 (5)	0.0084 (5)

Acta Cryst. (2012). E68, m543-m544

05	0.0190 (6)	0.0254 (6)	0.0420 (7)	0.0076 (5)	0.0066 (5)	0.0109 (5)
O6	0.0413 (9)	0.0343 (8)	0.0739 (12)	-0.0010 (7)	0.0068 (8)	0.0225 (8)
O7	0.0377 (7)	0.0244 (6)	0.0275 (7)	0.0027 (5)	0.0086 (6)	0.0033 (5)
08	0.0275 (6)	0.0257 (6)	0.0250 (6)	0.0059 (5)	0.0077 (5)	0.0046 (5)
09	0.224 (3)	0.0984 (18)	0.0477 (12)	0.057 (2)	0.0579 (17)	0.0054 (12)
C1	0.0355 (11)	0.0413 (11)	0.0270 (10)	0.0019 (8)	0.0010 (8)	0.0113 (8)
C2	0.0549 (14)	0.0517 (13)	0.0255 (10)	0.0117 (10)	0.0127 (10)	0.0080 (9)
C3	0.0507 (14)	0.0636 (15)	0.0366 (12)	0.0248 (11)	0.0167 (10)	0.0062 (10)
C4	0.0420 (12)	0.0539 (12)	0.0298 (10)	0.0225 (10)	0.0066 (9)	0.0067 (9)
C5	0.0336 (10)	0.0350 (10)	0.0244 (9)	0.0083 (8)	0.0038 (8)	0.0033 (7)
C6	0.0297 (10)	0.0445 (11)	0.0302 (10)	0.0073 (8)	0.0038 (8)	0.0095 (8)
C7	0.0271 (9)	0.0444 (11)	0.0255 (9)	0.0113 (8)	0.0050 (8)	0.0039 (8)
C8	0.0260 (9)	0.0455 (11)	0.0231 (9)	0.0159 (8)	0.0047 (8)	0.0022 (8)
C9	0.0225 (9)	0.0256 (8)	0.0217 (9)	0.0056 (7)	0.0024 (7)	0.0017 (7)
C10	0.0425 (12)	0.0257 (9)	0.0333 (10)	0.0021 (8)	0.0039 (9)	0.0059 (8)
C11	0.0544 (13)	0.0226 (9)	0.0425 (12)	0.0029 (9)	0.0067 (10)	0.0115 (8)
C12	0.0588 (15)	0.0289 (10)	0.0549 (14)	0.0175 (10)	0.0061 (11)	0.0179 (10)
C13	0.0418 (12)	0.0326 (10)	0.0466 (12)	0.0125 (9)	0.0050 (10)	0.0121 (9)
C14	0.0398 (11)	0.0236 (9)	0.0287 (9)	0.0075 (8)	0.0070 (8)	0.0061 (7)
C15	0.0391 (11)	0.0235 (9)	0.0373 (10)	0.0069 (8)	0.0053 (9)	0.0116 (8)
C16	0.0304 (10)	0.0258 (9)	0.0370 (10)	0.0069 (7)	0.0072 (8)	0.0089 (8)
C17	0.0239 (9)	0.0256 (9)	0.0389 (10)	0.0052 (7)	0.0087 (8)	0.0086 (8)
C18	0.0215 (9)	0.0216 (8)	0.0222 (8)	0.0068 (6)	0.0047 (7)	0.0036 (6)
C19	0.096 (2)	0.0696 (18)	0.0382 (14)	0.0266 (16)	0.0186 (14)	-0.0042 (12)
C20	0.095 (2)	0.0618 (18)	0.0569 (18)	0.0250 (16)	0.0176 (16)	-0.0221 (14)
C21	0.116 (3)	0.0413 (14)	0.074 (2)	0.0186 (15)	0.0223 (19)	-0.0111 (14)
C22	0.091 (2)	0.0405 (13)	0.0580 (16)	0.0123 (13)	0.0192 (15)	-0.0024 (12)
C23	0.0502 (13)	0.0402 (12)	0.0371 (12)	0.0117 (10)	0.0068 (10)	-0.0057 (9)
C24	0.086 (2)	0.0462 (13)	0.0402 (13)	0.0215 (13)	0.0153 (13)	-0.0018 (10)
C25	0.0472 (12)	0.0391 (11)	0.0306 (10)	0.0121 (9)	0.0084 (9)	0.0021 (8)
C26	0.0350 (10)	0.0364 (10)	0.0251 (9)	0.0112 (8)	0.0072 (8)	0.0019 (8)
C27	0.0175 (8)	0.0307 (9)	0.0240 (9)	0.0070 (7)	0.0024 (7)	0.0030(7)

Geometric parameters (Å, °)

Sm1—O1 ⁱ	2.3695 (11)	C5—C6	1.392 (3)
Sm1—O4 ⁱⁱ	2.3973 (11)	С5—С7	1.464 (3)
Sm1—O1W	2.4517 (13)	С6—Н6А	0.9300
Sm1—O2	2.4524 (12)	С7—С8	1.313 (3)
Sm1—O8	2.4598 (12)	С7—Н7А	0.9300
Sm1—07	2.4905 (12)	C8—C9	1.470 (2)
Sm1—O5	2.4919 (12)	C8—H8A	0.9300
Sm1—O4	2.5176 (11)	C10-C11	1.382 (3)
Sm1—O1	2.5861 (11)	C10—C15	1.387 (3)
Sm1—C27	2.8616 (17)	C11—C12	1.375 (3)
Sm1—C9	2.8959 (17)	C11—H11A	0.9300
Sm1—C18	2.8991 (16)	C12—C13	1.390 (3)
O1—C9	1.283 (2)	C12—H12A	0.9300
O1—Sm1 ⁱ	2.3695 (11)	C13—C14	1.391 (3)
O1W—H1WA	0.824 (15)	C13—H13A	0.9300

O1W—H1WB	0.834 (16)	C14—C15	1.397 (3)
O2—C9	1.249 (2)	C14—C16	1.465 (2)
O2W—H2WA	0.844 (17)	С15—Н15А	0.9300
O2W—H2WB	0.814 (17)	C16—C17	1.322 (3)
O3—C1	1.374 (3)	C16—H16A	0.9300
O3—H3	0.906 (17)	C17—C18	1.463 (2)
O4—C18	1.278 (2)	C17—H17A	0.9300
O4—Sm1 ⁱⁱ	2.3973 (11)	C19—C20	1.369 (4)
O5—C18	1.256 (2)	C19—C24	1.379 (3)
O6—C10	1.360 (3)	C20—C21	1.365 (5)
O6—H6	0.923 (17)	C20—H20A	0.9300
O7—C27	1.264 (2)	C21—C22	1.384 (4)
O8—C27	1.267 (2)	C21—H21A	0.9300
O9—C19	1.374 (4)	C22—C23	1.384 (3)
О9—Н9	0.944 (19)	C22—H22A	0.9300
C1—C2	1.375 (3)	C23—C24	1.384 (4)
C1—C6	1.385 (3)	C23—C25	1.468 (3)
C2—C3	1.385 (3)	C24—H24A	0.9300
C2—H2A	0.9300	C25—C26	1.321 (3)
C3—C4	1.381 (3)	С25—Н25А	0.9300
С3—НЗА	0.9300	C26—C27	1.473 (2)
C4—C5	1.387 (3)	C26—H26A	0.9300
C4—H4A	0.9300		
O1 ⁱ —Sm1—O4 ⁱⁱ	155.55 (4)	C1—C2—H2A	120.2
Ol ⁱ —Sm1—O1W	79.70 (5)	C3—C2—H2A	120.2
O4 ⁱⁱ —Sm1—O1W	87.34 (4)	C4—C3—C2	120.7 (2)
O1 ⁱ —Sm1—O2	119.15 (4)	С4—С3—НЗА	119.7
O4 ⁱⁱ —Sm1—O2	78.18 (4)	С2—С3—НЗА	119.7
O1W—Sm1—O2	79.90 (5)	C3—C4—C5	120.3 (2)
O1 ⁱ —Sm1—O8	82.67 (4)	C3—C4—H4A	119.9
O4 ⁱⁱ —Sm1—O8	88.82 (4)	C5—C4—H4A	119.9
O1W—Sm1—O8	126.86 (4)	C4—C5—C6	118.54 (18)
O2—Sm1—O8	150.00 (4)	C4—C5—C7	123.46 (18)
O1 ⁱ —Sm1—O7	81.62 (4)	C6—C5—C7	117.80 (17)
O4 ⁱⁱ —Sm1—O7	75.09 (4)	C1—C6—C5	120.92 (19)
O1W—Sm1—O7	75.65 (4)	C1—C6—H6A	119.5
O2—Sm1—O7	144.28 (5)	С5—С6—Н6А	119.5
O8—Sm1—O7	52.30 (4)	C8—C7—C5	127.42 (18)
Ol ⁱ —Sm1—O5	81.25 (4)	С8—С7—Н7А	116.3
O4 ⁱⁱ —Sm1—O5	119.02 (4)	С5—С7—Н7А	116.3
O1W—Sm1—O5	147.03 (4)	C7—C8—C9	122.50 (17)
O2—Sm1—O5	86.30 (5)	С7—С8—Н8А	118.8
O8—Sm1—O5	76.50 (4)	С9—С8—Н8А	118.8
O7—Sm1—O5	127.52 (4)	02—C9—O1	119.34 (15)
$O1^{i}$ —Sm1—O4	130.35 (4)	O2—C9—C8	121.45 (16)
O4 ⁱⁱ —Sm1—O4	67.43 (4)	O1—C9—C8	119.16 (15)
O1W—Sm1—O4	148.72 (4)	O2—C9—Sm1	57.08 (9)
O2—Sm1—O4	77.13 (4)	O1—C9—Sm1	63.25 (8)

O8—Sm1—O4	72.92 (4)	C8—C9—Sm1	167.72 (13)
O7—Sm1—O4	112.86 (4)	O6—C10—C11	122.73 (17)
O5—Sm1—O4	51.62 (4)	O6—C10—C15	117.38 (19)
Ol ⁱ —Sm1—Ol	67.98 (4)	C11—C10—C15	119.9 (2)
O4 ⁱⁱ —Sm1—O1	128.01 (4)	C12-C11-C10	119.62 (18)
O1W—Sm1—O1	73.82 (4)	C12—C11—H11A	120.2
O2—Sm1—O1	51.34 (4)	C10-C11-H11A	120.2
O8—Sm1—O1	140.98 (4)	C11—C12—C13	121.2 (2)
O7—Sm1—O1	139.96 (4)	C11—C12—H12A	119.4
O5—Sm1—O1	74.17 (4)	C13—C12—H12A	119.4
O4—Sm1—O1	106.71 (4)	C12—C13—C14	119.5 (2)
Ol ⁱ —Sm1—C27	82.20 (4)	C12—C13—H13A	120.2
O4 ⁱⁱ —Sm1—C27	80.18 (5)	C14—C13—H13A	120.2
O1W—Sm1—C27	101.49 (5)	C13—C14—C15	118.97 (18)
O2—Sm1—C27	158.23 (5)	C13—C14—C16	119.57 (18)
O8—Sm1—C27	26.17 (5)	C15—C14—C16	121.46 (17)
07—Sm1—C27	26.16 (5)	C10-C15-C14	120.72 (19)
05-Sm1-C27	102.28 (5)	C10—C15—H15A	119.6
04 - Sm1 - C27	92 42 (4)	C14— $C15$ — $H15A$	119.6
01 - Sm1 - C27	150 18 (4)	C17 - C16 - C14	125 68 (18)
$O1^{i}$ Sm1 $O2^{i}$	93 84 (4)	C17 - C16 - H16A	117.2
$O4^{ii}$ Sm1 $C9$	102.04(5)	C14 $C16$ $H16A$	117.2
O1W Sm1 $C9$	7273(5)	C_{16} C_{17} C_{18}	117.2 124.04 (17)
$O_1 = S_1 = C_2$	72.73(3)	$C_{10} - C_{17} - C_{18}$	124.04 (17)
O_2 —Sin1—C9	25.52(5)	$C_{10} = C_{17} = H_{17A}$	118.0
03 - 5111 - 03	138.31(3) 148.35(4)	$C_{10} - C_{17} - M_{17} - M_{17}$	110.0
0/-3111-09	(4)	05 - 018 - 04	110.04(13)
03 = 5111 = 09	82.02 (3)	03-018-017	123.10(10)
04 - 5m1 - C9	94.00 (4)	04-018-017	118.00 (15)
$C_{27} = C_{27}$	20.30(4)	03-018-5111	38.79(8)
$C_2/-Sm_1-C_9$	1/3.5/ (5)	04-018 Sm1	60.05 (8)
OI^{\perp} SmI—C18	105.70 (4)	C17—C18—Sm1	178.01 (12)
04 ⁿ —Sm1—C18	93.51 (4)	C20—C19—O9	121.7 (2)
Olw—Sml—Cl8	160.17 (5)	C20—C19—C24	121.1 (3)
O2—Sm1—C18	80.89 (5)	09—C19—C24	117.2 (3)
08—Sm1—C18	72.97 (4)	C21—C20—C19	119.3 (2)
O7—Sm1—C18	123.71 (4)	C21—C20—H20A	120.3
O5—Sm1—C18	25.53 (4)	С19—С20—Н20А	120.3
O4—Sm1—C18	26.09 (4)	C20—C21—C22	120.5 (3)
O1—Sm1—C18	90.30 (4)	C20—C21—H21A	119.7
C27—Sm1—C18	98.18 (5)	C22—C21—H21A	119.7
C9—Sm1—C18	87.75 (5)	C23—C22—C21	120.3 (3)
C9—O1—Sm1 ⁱ	155.04 (11)	C23—C22—H22A	119.9
C9—O1—Sm1	90.44 (9)	C21—C22—H22A	119.9
Sm1 ⁱ —O1—Sm1	112.02 (4)	C22—C23—C24	118.8 (2)
Sm1—O1W—H1WA	117.4 (17)	C22—C23—C25	118.7 (2)
Sm1—O1W—H1WB	123.4 (17)	C24—C23—C25	122.5 (2)
H1WA—O1W—H1WB	104.8 (19)	C19—C24—C23	119.9 (3)
C9—O2—Sm1	97.61 (10)	C19—C24—H24A	120.0
H2WA—O2W—H2WB	105 (2)	C23—C24—H24A	120.0

С1—О3—Н3	109.8 (18)	C26—C25—C23	127.6 (2)
$C18 - O4 - Sm1^{ii}$	153.49 (10)	C26—C25—H25A	116.2
C18 - O4 - Sm1	93.86 (9)	C23—C25—H25A	116.2
Sm1 ⁱⁱ —O4—Sm1	112.57 (4)	C25—C26—C27	123.00 (19)
C18—O5—Sm1	95.67 (10)	C25—C26—H26A	118.5
C10—O6—H6	108.7 (17)	C27—C26—H26A	118.5
C27—O7—Sm1	93.54 (10)	07-027-08	119.10 (15)
$C_{27} = 0.0000000000000000000000000000000000$	94.92 (10)	07-C27-C26	121.68 (16)
C19—O9—H9	109 (3)	08-C27-C26	119.22 (16)
03-C1-C2	122.80 (18)	07-C27-Sm1	60.30 (9)
03-C1-C6	117 30 (19)	08-C27-Sm1	58.92 (8)
$C_{2}-C_{1}-C_{6}$	119 90 (19)	$C_{26} - C_{27} - S_{m1}$	$176\ 60\ (13)$
C1 - C2 - C3	119.56 (19)	020 027 5111	1,0.00 (12)
01 02 05	119.50 (19)		
O1 ⁱ —Sm1—O1—C9	168.85 (12)	O1 ⁱ —Sm1—C9—O2	-178.87 (11)
O4 ⁱⁱ —Sm1—O1—C9	10.38 (11)	O4 ⁱⁱ —Sm1—C9—O2	19.83 (12)
O1W—Sm1—O1—C9	83.64 (10)	O1W—Sm1—C9—O2	103.17 (12)
O2—Sm1—O1—C9	-6.26 (10)	O8—Sm1—C9—O2	-99.16 (16)
O8— $Sm1$ — $O1$ — $C9$	-147.01(10)	O7— $Sm1$ — $C9$ — $O2$	100.89 (13)
O7— $Sm1$ — $O1$ — $C9$	125.36 (10)	05-Sm1-C9-O2	-98.27(11)
05-Sm1-01-C9	-104.36(10)	04-Sm1-C9-O2	-47.93(12)
04-Sm1-01-C9	-6372(10)	01 - Sm1 - C9 - 02	-16852(18)
$C_{27} = Sm1 = O_{1} = C_{9}$	168 52 (10)	C18 = Sm1 = C9 = O2	-7328(12)
C18 = Sm1 = O1 = C9	-8431(10)	$O1^{i}$ Sm1 $O2$ $O1^{i}$	-10.35(11)
Ω^{i} Sm1- Ω^{i} Sm1 ⁱ	0.0	04^{ii} Sm1 C9 01	-171.66(9)
$O4^{ii}$ Sm1 $O1$ Sm1	-15847(4)	01W = Sm1 = C9 = 01	-88.32(10)
01W—Sm1— 01 —Sm1 ⁱ	-85 21 (6)	0^{2} Sm1 -0^{9} 0^{1}	16852(17)
Ω^2 _Sm1_ Ω^1 _Sm1 ⁱ	-175 11 (8)	02 - 5m1 - C9 - 01	69 36 (16)
08—Sm1— 01 —Sm1 ⁱ	44 14 (8)	07 - 5m1 - C9 - 01	-90.60(13)
$07-Sm1-01-Sm1^{i}$	-43.49(8)	05-Sm1-C9-01	70 24 (9)
05 Sm1 01 Sm1 ⁱ	43.49 (8) 86.80 (5)	04 Sm1 - 09 O1	120.58(9)
04 Sm1 01 Sm1 ⁱ	127 43 (5)	C_{18}^{18} Sm1 C9 O1	120.38(9) 95.23(10)
C_{27} Sm1 O_{1} Sm1 ⁱ	-0.32(11)	O_{1i}^{1i} Sm1 C0 C8	93.23(10)
$C_2 = S_{m1} = O_1 = S_{m1}$	-168.85(12)	$01 - 5111 - C_{2} - C_{3}$	-67.2(6)
$C_{2} = S_{111} = O_{1} = S_{111}$	-106.03(12)	04 - 3111 - 09 - 08	-07.2(0)
C_{10} Sm1 O_{2} C_{0}	100.64(3) 1 20(12)	$01 \text{ w} = 5111 = 0 \text{ c}^{2}$	10.2(0)
01 - 5111 - 02 - 09	1.29(13)	02 - 3111 - 09 - 08	-87.0(0)
04^{-} SIII -02^{-} C9	-100.19(12)	03 - 5111 - 09 - 08	1/3.9(3)
O1 w = Sm1 = O2 = C9	-70.81(11)	0/-sm1-c9-c8	13.9 (0)
08 - Sm1 - 02 - C9	133.08 (11)	05-Sm1-C9-C8	1/4.7(6)
0/sm102C9	-118.04(12)	04 - 5m1 - C9 - C8	-134.9 (6)
05 - Sm = 02 - 02	/9.13 (11)	OI = SmI = C9 = C8	104.5 (6)
04 - Sm = 02 - 02	130.57 (12)	C18 - Sm1 - C9 - C8	-160.3 (6)
01 - sm1 - 02 - C9	6.49 (10)	06-010-011-012	1/8./(2)
$C_2/=Sm1=O_2=C_9$	-166.51(12)		-0.5 (3)
C18—Sm1— $O2$ — $C9$	104.25 (12)	C10-C11-C12-C13	-0.5(3)
$O1^{-}$ Sm1 $-O4$ $-C18$	21.91 (11)	C11 - C12 - C13 - C14	0.8 (3)
$O4^{\text{m}}$ Sm1 $-O4$ C18	-1/7.95 (12)	C12 - C13 - C14 - C15	-0.3(3)
OIW—Sml—O4—C18	-139.30 (10)	C12—C13—C14—C16	179.75 (19)
O2—Sm1—O4—C18	-95.58 (10)	O6-C10-C15-C14	-178.21 (18)

O8—Sm1—O4—C18	86.05 (10)	C11—C10—C15—C14	1.1 (3)
O7—Sm1—O4—C18	120.58 (9)	C13—C14—C15—C10	-0.7(3)
O5—Sm1—O4—C18	-0.04 (9)	C16—C14—C15—C10	179.31 (18)
O1—Sm1—O4—C18	-53.10 (10)	C13—C14—C16—C17	-179.3(2)
C27—Sm1—O4—C18	103.73 (10)	C15—C14—C16—C17	0.7 (3)
C9—Sm1—O4—C18	-76.57(10)	C14—C16—C17—C18	-179.51 (17)
$O1^{i}$ —Sm1—O4—Sm1 ⁱⁱ	-160.13 (4)	Sm1—O5—C18—O4	-0.08 (16)
$O4^{ii}$ —Sm1—O4—Sm1 ⁱⁱ	0.0	Sm1—O5—C18—C17	179.55 (15)
O1W—Sm1—O4—Sm1 ⁱⁱ	38.66 (10)	Sm1 ⁱⁱ —O4—C18—O5	-175.69 (16)
O2—Sm1—O4—Sm1 ⁱⁱ	82.38 (5)	Sm1—O4—C18—O5	0.08 (16)
O8— $Sm1$ — $O4$ — $Sm1$ ⁱⁱ	-96.00(5)	$Sm1^{ii}$ —O4—C18—C17	4.7 (3)
O7— $Sm1$ — $O4$ — $Sm1$ ⁱⁱ	-61.47 (6)	Sm1—O4—C18—C17	-179.57 (13)
O5— $Sm1$ — $O4$ — $Sm1$ ⁱⁱ	177.91 (7)	$Sm1^{ii}$ —O4—C18—Sm1	-175.8(3)
O1— $Sm1$ — $O4$ — $Sm1$ ⁱⁱ	124.86 (5)	C_{16} C_{17} C_{18} C_{5}	-3.0(3)
$C_{27} = Sm1 = 04 = Sm1^{ii}$	-78.32(6)	$C_{16} - C_{17} - C_{18} - O_{4}$	176 63 (17)
$C9-Sm1-O4-Sm1^{ii}$	101 38 (6)	$O1^{i}$ Sm1-C18-O5	1726(11)
$C18 = Sm1 = O4 = Sm1^{ii}$	177.95 (12)	04^{ii} Sm1 - C18 - 05	-178.03(10)
$\Omega_{1^{i}}^{i}$ Sm1-05-C18	-163.20(10)	$01W_{m1}$ $10^{-0.5}$	-8614(17)
04^{ii} Sm1 05^{-} C18	2 25 (11)	02-Sm1-C18-O5	-100.60(10)
01W - Sm1 - 05 - C18	2.23(11) 141 53(11)	02 Sm1 - C18 - 05	94 28 (10)
$\Omega^2 = Sm1 = \Omega^5 = C18$	76 54 (10)	07 - 8m1 - C18 - 05	10758(10)
02 Sm1 - 05 C18	-78.70(10)	04 - Sm1 - C18 - O5	-179.92(16)
$0.7 \text{ Sm}^{-1} \text{ O}^{-1.0} \text{ C}^{-1.0}$	-90.91(11)	$O_1 Sm_1 C_{18} O_5$	-49.91(10)
04 Sm1 = 05 - 018	90.91(11)	$C_{27} Sm1 C_{18} O_{5}$	49.91(10)
01-Sm1-05-C18	127 32 (10)	$C_{27} = S_{m1} = C_{18} = 05$	-7610(10)
$C_{27}^{}$ Sm1-05-C18	-83.23(10)	$O1^{i}$ Sm1 $C18 O4$	-162.82(9)
C_{2}^{0} Sm1 O5 C18	101.64(10)	O_{1}^{μ} Sm1 C18 O4	102.02(9)
O_{1i}^{1i} Sm1 O_{7}^{7} C_{27}^{77}	80.35 (11)	01W Sm1 C18 04	1.09(11)
01 - 5m1 - 07 - 027	-98.15(11)	$O_{1}^{2} = Sm_{1}^{2} = C_{18}^{2} = O_{4}^{2}$	70 32 (0)
04 - 5m1 - 07 - 027	170 70 (11)	02 - 5m1 - C18 - O4	-85.80(9)
0^{2} Sm1 07 C27	-140.07(10)	07 Sm1 C18 O4	-72.50(9)
02 = 3111 = 07 = 027	2 16 (0)	05 Sm1 - C18 - 04	72.30(10) 179.92(16)
05 Sm1 - 07 - 027	2.10(9) 17.23(12)	01 Sm1 - 018 O4	179.92(10)
03 - 3111 - 07 - 027	-41.05(12)	$C_{1} = S_{11} = C_{10} = C_{4}$	-78.68(10)
04 - 3111 - 07 - C27	-41.03(11) 120.50(10)	$C_2 =$	-78.08(10) 102.82(10)
$C_{1}^{0} = S_{111}^{0} = C_{121}^{0} = C_{221}^{0}$	129.30(10) 172.02(10)	$C_{24} = C_{10} = C_{20} = C_{21}$	105.82(10)
$C_{2} = S_{111} = O_{1} = C_{27}$	1/3.03(10) 12.08(12)	C_{24} C_{19} C_{20} C_{21} C_{22}	0.0(6)
C18 - SIII - 07 - C27	-13.98(12)	C19 - C20 - C21 - C22	0.9(0)
$01^{}$ Sm108C27	-8/.21(10)	$C_{20} = C_{21} = C_{22} = C_{23}$	-1.5(6)
$04^{}$ Sm108027	69.81 (10)	C_{21} C_{22} C_{23} C_{24}	1.1 (5)
01 w = Sm = 08 = 027	-15.98(12)	$C_{21} = C_{22} = C_{23} = C_{23}$	-1/7.8(3)
02 - Sm 1 - 08 - 027	133.36 (11)	C_{20} C_{19} C_{24} C_{23}	-0.4 (5)
0/-sm1-08-027	-2.16(9)	09-019-024-023	1/9.8 (3)
05—Sm1—08—C27	-169.92(10)	$C_{22} = C_{23} = C_{24} = C_{19}$	-0.2(5)
04—Sm1—08—C27	136.53 (10)	$C_{25} = C_{23} = C_{24} = C_{19}$	1/8./(3)
01 - 8m1 - 08 - C27	-12/.82(10)	$C_{22} = C_{23} = C_{25} = C_{26}$	168.4 (3)
C9 = Sm1 = O8 = C27	-169.02(11)	$C_{24} = C_{25} = C_{25} = C_{26}$	-10.5(4)
C18 - Sm1 - O8 - C27	103.84 (11)	C_{23} $-C_{25}$ $-C_{26}$ $-C_{27}$	-1/8.1(2)
03-01-02-03	-1/8.3(2)	Sm1 - 07 - 027 - 08	-3.80 (17)
$C_0 - C_1 - C_2 - C_3$	1.5 (3)	Sm1—O/—C27—C26	176.78 (15)

C1—C2—C3—C4	0.9 (4)	Sm1—O8—C27—O7	3.86 (17)
C2—C3—C4—C5	-1.5 (4)	Sm1-08-C27-C26	-176.71 (14)
C3—C4—C5—C6	-0.4 (3)	C25—C26—C27—O7	0.8 (3)
C3—C4—C5—C7	174.3 (2)	C25—C26—C27—O8	-178.66 (19)
O3—C1—C6—C5	176.38 (18)	O1 ⁱ —Sm1—C27—O7	-86.87 (10)
C2-C1-C6-C5	-3.5 (3)	O4 ⁱⁱ —Sm1—C27—O7	76.12 (10)
C4—C5—C6—C1	2.9 (3)	O1W—Sm1—C27—O7	-9.11 (11)
C7—C5—C6—C1	-172.11 (18)	O2—Sm1—C27—O7	82.40 (16)
C4—C5—C7—C8	-7.3 (3)	O8—Sm1—C27—O7	-176.12 (17)
C6—C5—C7—C8	167.4 (2)	O5—Sm1—C27—O7	-166.09 (10)
C5—C7—C8—C9	-171.47 (18)	O4—Sm1—C27—O7	142.72 (10)
Sm1-02-C9-01	-11.77 (18)	O1—Sm1—C27—O7	-86.56 (14)
Sm1-02-C9-C8	165.59 (15)	C18—Sm1—C27—O7	168.29 (10)
Sm1 ⁱ O1C9O2	165.90 (18)	O1 ⁱ —Sm1—C27—O8	89.25 (10)
Sm1—O1—C9—O2	11.05 (17)	O4 ⁱⁱ —Sm1—C27—O8	-107.76 (10)
Sm1 ⁱ	-11.5 (4)	O1W—Sm1—C27—O8	167.01 (10)
Sm1—O1—C9—C8	-166.37 (15)	O2—Sm1—C27—O8	-101.48 (16)
Sm1 ⁱ —O1—C9—Sm1	154.8 (3)	O7—Sm1—C27—O8	176.12 (17)
C7—C8—C9—O2	-4.1 (3)	O5—Sm1—C27—O8	10.03 (10)
C7—C8—C9—O1	173.30 (18)	O4—Sm1—C27—O8	-41.16 (10)
C7—C8—C9—Sm1	75.2 (6)	O1—Sm1—C27—O8	89.55 (12)

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
O1W—H1 WA ···O5 ⁱ	0.82 (2)	2.02 (2)	2.8183 (18)	163 (2)
O3—H3…O8 ⁱⁱⁱ	0.91 (2)	1.76 (2)	2.6692 (19)	176 (3)
O6—H6···O7 ^{iv}	0.92 (2)	1.78 (2)	2.7005 (19)	174 (3)
O2W— $H2WA$ ···O9 ^v	0.84 (2)	2.15 (2)	2.947 (4)	158 (3)
$O1W$ —H1 WB ···O2 W^{ii}	0.83 (2)	1.86 (2)	2.688 (2)	175 (2)
O2W— $H2WB$ ···O3 ^{vi}	0.81 (2)	1.98 (2)	2.790 (3)	173 (4)

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) *x*, *y*, *z*+1; (iv) *x*+1, *y*+1, *z*; (v) -*x*+1, -*y*+1, -*z*; (vi) *x*, *y*, *z*-1.